
1 Project title

Java StarFinder: Symbolic Execution with Separation Logic for Testing and Verifying

Heap-manipulating Programs.

2 Provide a description of the project

Symbolic PathFinder (SPF) [5] has been very successful in testing and verifying Java

bytecode programs with numeric inputs. However, its capability is very limited when

coping with programs that make extensive use of heap data structures. The underlying

lazy initialization algorithm [3] exhaustively enumerates all heap objects that can bind

to the structured inputs accessed by the program. This exhaustive enumeration may

identify many invalid heap configurations that violate properties of the data structures

in the heap, which leads to a huge amount of false alarms.

We aim to tackle this problem by leveraging recent advances in separation logic [6],

a well-established assertion language designed for reasoning about heap-manipulating

programs. We will build a system, Java StarFinder (JSF), that enables users to describe

properties of the data structures in the heap using separation logic. JSF is a symbolic

execution engine, built on top of SPF, that generates path conditions (PCs) in the form

of separation logic. Similar to numeric PCs, these PCs will be checked by a (separation

logic) solver for satisfiability and test input generation. In addition, JSF can also verify

program correctness by first collecting PCs satisfying some given preconditions and

then verifying whether these PCs satisfy user-provided assertions.

3 What is the development methodology you propose to use for the

project?

Our first step is to extend the annotations that enable users to specify preconditions,

postconditions, and loop invariants. Then, we will develop a new symbolic execution

engine, extending from SPF, based on the theoretical results proposed in Smallfoot [1]

and HIP [2]. To solve separation logic path conditions, we will integrate our symbolic

execution engine with the S2SATSL solver [4]. In the following, we illustrate our ap-

proach through an example.

1 public class Node {

2 public Node next;

3 }

4

5 public class TestNode {

6 public Node foo(Node x)

7 {

8 if (x == null) return null;

9 else if (x.next == null) return x;

10 else return x.next;

11 }

12 }

1



Here the input x is a single-linked list. However, without considering this property

SPF (with HeapSymbolicListener and lazy initialization being turned on) exhaus-

tively enumerates all possible references, and generates four PCs, including a redudant

one for the case x is a circularly linked list: x.next = x. The number of redundant PCs

will rapidly explode when the function foo involves more nodes, or in the case the input

is a tree, and lazy initialization includes assumptions of a cyclic graph.

On the other hand, our JSF system will enable the user to provide the following

inductive predicate sll to define a singly-linked list.

pred sll(root) ≡ emp ∧ root = null

∨ ∃ n· root7→Node(n) ∗ sll(n)

JSF generates the test cases for all paths where the input x satisfying the pre-condition

sll(x) which states that the input x must be an instance of a singly-linked list.

Our illustrative example has three paths corresponding to return statements at

line 8, line 9, and line 10 respectively. For the first path, JSF collects the PC corre-

sponding to the conjunction of the precondition and the condition of the then branch

as: sll(n)∧x = null. After that, JSF generates the test input x = null for the path by

using S2SATSL solver. In the second path, there exists a memory access x.next at line 9.

To obtain states in which there is no memory error, following the approach presented

in [1, 2], JSF unfolds the inductive predicate relating to x to expand its footprints. In this

example, JSF unfolds the predicate sll(x) of the state sll(x)∧x 6= null right before the

memory access to obtain the memory-safe state: ∃ n· x 7→Node(n)∗sll(n)∧x 6= null.

By doing so, the PC generated for this paths is: ∃ n· x 7→Node(n) ∗ sll(n) ∧ x 6=
null∧n = null. By using S2SATSL, JSF obtains the test input as: x 7→Node(n)∧n =
null. Similarly, JSF generates the following test input for the third program path:

x 7→Node(n) ∗ n7→Node(n1) ∧ n1 = null.

4 What are the goals that you hope to accomplish in your project?

At the end of this project, we aim to achieve the following goals:

– Separation logic-style symbolic execution engine for a fraction of Java bytecode.
– A component to generate path conditions in form of separation logic.
– Integration of S2SATSL to generate test inputs from these conditions.
– (Optional) Supporting postconditions and loop invariants to verify the programs.

5 Tell us about yourself. What are your qualifications, interests,

and expectations?

I am Long H. Pham, a second year Ph.D. student at the Singapore University of Tech-

nology and Design in Singapore. My research interests include program verification,

program analysis, and software engineering. In particular, I have a strong background

in symbolic execution and separation logic. I participated in the development of the

HIP/SLEEK [2] verification system for separation logic when I was a research assis-

tant at the School of Computing - National University of Singapore. As a programmer,

I have eight years of experience with Java as well as other programming languages. I

believe that my background and experience will guarantee the success of this project.

2



6 Briefly describe any discussions you have had with JPF mentors

about your project

I have discussed with Quang Loc Le and Quoc-Sang Phan, the mentors of this project.

We have clarified the goals of the project, technical challenges and solutions to achieve

these goals. We also made an estimation for the project, and agreed on the following

milestones:

– 07/14/2017: generating test cases for loop-free intra-procedural programs.

– 08/07/2017: generating test cases for intra-procedural programs with loops.

– 08/29/2017: generating test cases for inter-procedural programs.

7 Have you worked on an open-source project in the past, whether

through JPF, Summer of Code, or otherwise?

Yes, I have made several contributions to the following project on Github: https://

github.com/sunjun-group/Ziyuan.

References

1. J. Berdine, C. Calcagno, and P. W. O’hearn. Smallfoot: Modular automatic assertion checking

with separation logic. In International Symposium on Formal Methods for Components and

Objects, pages 115–137. Springer, 2005.

2. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape, size and

bag properties via user-defined predicates in separation logic. Science of Computer Program-

ming, 77(9):1006–1036, 2012.

3. S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution for model check-

ing and testing. In Proceedings of the 9th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, TACAS’03, pages 553–568, Berlin, Heidelberg,

2003. Springer-Verlag.

4. Q. L. Le, J. Sun, and W.-N. Chin. Satisfiability modulo heap-based programs. In International

Conference on Computer Aided Verification, pages 382–404. Springer, 2016.

5. C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and N. Rungta. Symbolic

pathfinder: integrating symbolic execution with model checking for java bytecode analysis.

Automated Software Engineering, 20(3):391–425, 2013.

6. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in

Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55–74. IEEE,

2002.

3

https://github.com/sunjun-group/Ziyuan
https://github.com/sunjun-group/Ziyuan

	Project title
	Provide a description of the project
	What is the development methodology you propose to use for the project?
	What are the goals that you hope to accomplish in your project?
	Tell us about yourself. What are your qualifications, interests, and expectations?
	Briefly describe any discussions you have had with JPF mentors about your project
	Have you worked on an open-source project in the past, whether through JPF, Summer of Code, or otherwise?

